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THE ALGEBRAIC STRUCTURE OF THE N-BODY PROBLEM

Bv L., M. Rauch

ABSTRACT

2507

The basic concern in this paper is to unfold the algebraic
structure of the n-body problem, It is found that the union
of initially disparate sub-groups leads to a group whose
properties are the formal tools that formulate the explicit
solutions of the n-body problem. A brief indication of the

applications of this evolved algebra is given in the 1las
section of the paper.,
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THE ALGEBRAIC STRUCTURE OF THE N-BODY PROBLEM

INTRODUCTION

The two known general processes in the solution
of the N-body problem, namely, the serial method of Steff-
ensen [11, [2], [3] and the iterative process of Rauch [4],
[5] are implicit formulations. They lead only to numerical
evaluations. To remedy this defect explicit solutions are
necessary so that (among other things) the interpretations
of the dynamical states, from the analvtical phases, may
be given directly other than through numerization.

In the attempt to obtain such solutions it was
observed that more basic formal considerations were nec-
essary to gain the desired end. These initial observations
generated the present paper on the algebraic structure of
the N-body problem,

The paper is divided into two parts. The first
part deals with two collections of initially disparate
elements and the union of these two sets, The elements of
the first set are concrete, generated from an initial element
which essentially specifies the canonical form of the equa-
tions of motion of the N bodies. The elements of the second
aggregate are, at first, abstract but are given a rudimentarvy
character through what appears to be an arbitrary definition.
It is then found that the union set endows certain properties
(embodied in theorems) on the initially abstract second sub-
set which then allows us to deduce the group properties of
the union ensemble,

These group properties, as well as more concrete
formulations, are deduced in the second part of the paper.
These concrete aspects are precisely the tools that formulate
the explicit solutions (with their concomitant properties
such as regions of convergence, singularities, etc.) of the
problem, ’

The paper is, of course, concerned only with the
formal aspects of the N-body problem, however, the last sec-
tion of the second part gives a brief indication of the app-
lications of the evolved algebra.
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I. THE ALGEBRAIC STRUCTURE

In this part the equations of motion are re-
duced to a symbolic canonical form. This symbolic rep=-
resentation suggests the group character of the set of
elements which constitute not only an abstract solution
of the N-body problem in application, but also its con-
crete formulation., The equations of motion are not
regularized [6]1, [7] since the abstraet structure of the
set is thus more readily attained.

The symbolic form of the equations of motion. The
position vector xI of the i'h point mass M; is given by
its components x1P relative to an inertial Cartesian
rectangular cosrdinate frame. It is specified that the

indices i, j, h, range over the positive integers in the
form,

i,j = 1,2y«=~,n3 h = 1,2,3; 1 # 3

The equations of motion of the N-bodies, in a
potential field V, are given in the Newtonian form,

«ih

x =2 Y v- i.ﬁl__'i%
Mg xih i, (RIHL/
1y

where the scalar R Y, the square of the magnitude of the
position vector between the i and j particles, is given by

Rids [ cdhe xIhy2
h

If the vector X'J is defined as

then its components are expressed by the symbol

le(h) = xih - x:'h

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)
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and so

.. .. 2 .o
rij - z [ xi1 (m]" = R
With the further definition of the scalar

Sij : (Rij) -3/2

1]

the equations of motion take the form

[

sih 13id (. ) e
%0 = Z H;S I (n) g Hy = GM3 i # 3
3

Since the type of operations that follow leave
the indices unaltered, we delete these and reintroduce
them at appropriate points. The given system of differ-
ential equations thus formally become

% = i - 33
X =] Hjs x} = H S
;|
where the summation on the j is understood. The above

symbolic form (1.9) may be further modified by the def-
initions

x
N
1
ja sl
w
<
(o)
»
N
"
»
-
>
"
’<
“w
w
m
w

Define

Yo E SoXoo

so that finally the equations of motions in the form (1.2)
have been transformed into the canonical symbolic form

-2 -

(1.6)

(1.7)

(1.8)

(1.9

(1.10)

(1.11)




The set of derivatives with positive subscripts.

The union R of the two sets Rl and R2 of elements

(vo»Y¥15Y2,---) and (===,vV_3»Y_5»¥_y) respectively, will be

shown to be a group under a well defined multiplicative op-
eration. Some significant properties of this group will be
formulated, among which will be the central fact that any
| element of the set, R = R UR2=~{---,y_g’y_l,vo,yl,yz,—-f},

¢ in the order indicated, will be the derivative (relative to
time) of an immediate predecessor and the integral of an
immediate successor.

In this section we deal only with the set Ry of
elements with positive subscripts or zero.

The elements (yo,yl,vz,-~-) € Ry as thev stand
now are wholly abstract (undefined) except for y, (specified
by (1.11)). We proceed to express the elements (yj,vVy,V3,--=)

with positive subscripts by means of %ﬁibnitz's rule, apolied
to yo, for the determination of the r " derivative of the
product of two functions S,(t) and Xb(t). Apply the rule to

definition (1.11). Thus

dryo ° r f T
¥p E (yo)r g — D) (;) Sr-pxb = (p)xr_psp;r = 0,1,2,==-, (2.1)
dt p=o p=o
where the well known symbol (ﬁ) = __T!' __ represents the
p!(r - p)!

coefficients of a binomial expansion and where

1 r-p dPx
S z 2___22 , X = o, r 2 p. (2.2)
=P 4¢r-p P atP

The elements Yo € Ry with positive integral subscripts or

zero, may be viewed as now defined by means of (2.1) and (2.2).
We will call these elements, for brevity, positive ones,

The property of closure on Ry, with a rule of multi-
plication for any two elements yr,vaRl, is formulated by

-3-




Theorem 1 - The product of any two elements yr,ymsRl is an

element of Rl given by

VyVy =vyy =y 3 TyM = 0,1,2,mm= (2.3)
rm mpr2r r + m

where the following conditions on the S's and X's hold:

a®8 ~ Ta * B° XYXG : XY + 6; a189Y96 T 0,1,2,--- (2.4)

The proof is as follows. In view of Eq. (2.1)

r+m
= r tm + >
Yp +m © ) ( s ) Sr +m-s¥gp T *M2O
s=o0

By the well known addition rule for binomial coefficients
(9], [10], namely

S
(P s m) = q_Z_o (fD (sfq) 3 m> 8, > S, (2.5)

it follows that

r+m s r+m s
Vr+m= L I (g‘) (sfcb Spim-s X5 * ] Srem-s¥s ] (3) (52‘;) - (2.8)
s=0 q S=0 Q=0

For the interval s + 1 <q <m, we have s - q < -1,
If use is made of the combinatorial fact that

X
(r) = o, for any integer r < o or r > x and any x (2.7)

then

m
my r r o, Since s - g < - 1, namel s - < o
q§s+1 <Q)€-<D ’ S = i Vs d

T




Thus

PRGICOES

IIMU)

C@6E 1 @6

IIMU)

m r
O (S-Q) .

Formula (2.6) thus becomes

r+m m
Tram T sZo qgo (gl) (SEQ) Sr+m-sxs

Use the substitution p = s - q with the corres-
ponding range for p; namely when s = o and q = o, then

p = o. Likewise when s = r + mand q = m, then o = I,
This leads to the expression

r

Yr+m = z Z (g) (g) Sr-p+m-qxp+q

p=o q=o

If it is specified that the rules for the multiplication
of the S's and the X's are to be the conditions given by
(2.4) then

r m
yr+m = pZo(g)sr-pxp QZO (gl) Sm_qx = V V srym = 0’192,—--,

by definition (2.1).

The commutative rule is readilv shown so that the
theorem has been validated.

In particular for, say, r = ©

yy =y

oVm o+m =yﬁ,w1th

SoSp = Sps XoXn = Xp3 mynr > 0 (2.8)

-5




We may thus formulate the

Corollary - The element Vo € Rl is a multiplicative identity
element of the set Ry.

It is of some interest to note that the set of
elements generated by the binomial formula for non-negative
integral powers,

s + X)T = (T ST=PxP, r = 0,1,2,~-- (2.9
)= G

are isomorphic to the set R, of positive elements generated

by the Leibnitz formula (2.1). For, briefly, if the powers
are transformed to subscripts and if the S and X are defined

as S = So’ and X = Xoand further, if Vo = (§ + X),, then (2.9)
turns into (2.1), namely
z .y (3 (2.10)
Yo (S +x) = | (F) SpopXpr T = 051,2,mmm .
p=0 :
and where, for r = 0
v = (5 + X)g = S X, (2.11)

Mixed set of elements - belonging to Rl and Rz. The

character of the elements ¢ R2, namely, those elements with

negative subscripts (negative elements) differ in the con-
crete basically from the positive ones (eR;) in their gen-

eration and mode of representation. They have no process

of generation from an initial element v, unless we define

arbitrarily an ad hoc principle of generation and secondly,
as will be noted, their mode of representation is no longer
in finite terms of the S's and X's.

Let us consider initially and briefly a heuristic
point of view from which we can draw a provisional definition
(through analogy) of any negative element., Thus consider the
binomial expansion for negative integral powers,

.




-

(-1)"m;fi§s‘m'rxr = r

o] r

(-1)" _r(m+r)
o F(m)T(r+l)

HnHe-18

(S + X)‘m =

r

e~ 8

STMTXTs m = 0,1,2,--- (3.1)

where the gamma functions are used in the last member in
the egualities.

We now start ab initio and express any element
Y.m € Ry in terms of the S's and X's, by means of an ana-

logous formula,

(y‘) T y_oo= E(-l)?h+g-g SemrXp = f(‘l)r r(m+r)
o)-m = Yom = L "771 e S L T

S-m-rxr’ m=0,1,2,--- (3.2)

(The case m = 0 is included to give the formula a trifle
larger scope, though the value y, derived from (3.2) be-

longs, by definition, to the set Rl)' The statement (3.2)
for y_p is wholly abstract. No meaning can be attached

to the element y__eR, since no definition is explicit in
(3.2) ,namely the unknown Yom is given in terms of a set of

unknowns'{s_m_r; 0 < r<ep, If the set of scalars {S-m-r}

could be determined the N-body problem would likewise be
resolved.

We will now attempt to give some character to the
elements Yem (other than that found in the almost empty

definition (3.2). In the previous section any two positive
elements were combined (by a defined multiplicative operation)
to form an element of R1 . We consider now the second pos-

sible case in which Yn€Rys¥_p€R, such that y_. y eR where
R = RIURZ' We formulate closure on the set R by

Theorem 2 - If y__eR, and y e R, then

=T=




y-myn = y_m+n ’ y-m+ne R H m’n = 0!1929-‘- (3.3)

with the conditions that

S_q Sp = S—gtgr Ko X = Xoligh @aBays 6= 0,1,2,--- (3.4)

-

The expansion of y_p4n is, with (3.2) in view,

given as

- v T (m-n+r-1 .
Yem+n * Y-(m-n) -rzo (-1) <’ r > Se(m-n)-T%p 3

myn = 0,1,2,--- (3.5)

It is to be observed that if m = n < 0 or m < n (so that
y_(m_n)s&), then expression (3.5) turns into a finite form

of the type (2.1). We are thus concerned with the more in- ‘
volved case where m - n > 0 or m > n, namely with the sit-
uation where Y_(m-n)tR2 -

The left member of (3.3) is given, by means of
(3.2) and (2.1), in the form

by r (mtr-l no(n
YemYn * rg;-l) ( r >S—m—rxrszo‘5>sn-sxs'

n
The factor z <2> Sn-s XS is transformed to an infinite
s=o

sum by the following device. With the combinatorial formula
(2,7) in mind,

© n
S?g+l <s> S _oXg = 0~

so that




(g)sn_sxs + -f <2>Sn-sxs= ? <§>sn_sxs.
80 s=n+l sS=0

It follows that

(8)s

Yom¥n © 2 (-1) (mr'r )S_m_r Xp o

r=0 S

He—-1 8

n—SXS

Cauchy's formula for the product of two sums, namely

r
Z Up Z Yp T 2 2 Ur_t Yo
r r r t=o

is utilized. It follows that

r

] (-1FF m+¥:§'1><¥>s X .S X

v vy = .
o tio —mer+tir-t n-t’+t

T=-m'n

He 8

r

If multiplication is defined for the S's and X's by the

conditions that (3.6) SGS8 = Su g? ny§ = Xy+6 for all integers
@yB8,57,6
then
- r
T m+r-t+1
Y_myn = 2 (-l) Z < r-t S-m+n-rxr'
r=o t=o

If a comparison is made between (3.7) and (3.5),
it is observed that the two left members will be identical
provided the condition

f e (i) @ ()

t=o

for any r, is satisfied. This must be shown.

(3.6)

(3.7)

(3.8)

-9




The well known combinatorial form

(-:Q = DY <v+:-l> (3.9)

is utilized in what follows. Let T = r - t. So that
when t = 0 then T = r and when t = r, T = 0, These
substitutions are used in the left member of (3.8).

Thus

et (me(R)s (ot et () o)
t=0 T=o

Use (3.9) from right to left, to get

foent @z s vm FEGN.

t=o

If the addition formula (2.5) is used on the
above right member,

ot (i) e ()
t=o
Let ("™ =<"“;")> and again use (3.9), then
(—m;n) = (-1)" (m—a;r-l)
and from which we get
j (-1t <m;5;t> (@ = (-1)2r Qn-n;r-l)z (m-n;r—l>.
=0

But this is precisely condition (3.8). Relations (3.3) are
thus seen to be valid under conditions (3.4).

=]10-




Elements belonging only to R,

In the last two sections we dealt with the
multlpllcatlve rule for any two elements such that
eRl, Yn€Ry and y__€R,, Yn€Rys respectively.

However there exists no a priori reason that the thlrd
possibility must be fulfilled, namely that if Yem 2,

Y_neRy then y__ Y_ntRye We now formulate, in a theorem
the closure property on R2 for negative elements.

Theorem 3 - If y n’ Y £ R2, then

- 4 - - o o '4 L) 1 )
Y_mY_n Y_m_n ’ Y_m_nER29 m,n 0,1,2, (

with the conditions
that

= = : 6 = - an
-a _B S-(u+8)’ X-YX-6 X-(y"é),a’s’y’ 0,1’2, 0(402)

The element y men © R2 is specified, by means
of (3.2) as

i (<1)T (y+n;r-l>s

y-m--n = y-(m+n)
r=o

The product of the two elements take the form

YomYon = zo( -1)T <m+r—1>s-m-r z (-1)8 <m+s-1)s _SXS°

_(m+n)-rxr ¢ ('403)

-1l1.




Use the Cauchy multiplicative formula,

r -t N\
= (“l)r <m+]?—'t-l; t/n+t-1
YemYon rgo Zo Pt S_ e Xpop (<D ( : )

t
ke = Lo T (mem(nnt)s Lk

in view of the assumed conditions that

S.a5-5 7% s X_ (X g = X_ _g3 92858 = 0,1,2,---. (4a4)

If Yemen = YomYon?® then for every r in the interval

(0,=), we have

i m+£:g-1)<nzt-¥) <?+¥+r-l> . (4.5)

t=o0

To show the validity of (4.5), use the addition formula (2.5).
Then

rz' m+£:z-1> <n+t-l) - <m+n;r—l-l)

By means of (3.9)

(m+t-1) = LT3,

So that

we~ Y

r
o e - ) ) @@

-]2-




Let T=r - t , then

r T
Q = (-1)F g"l’ (’“*%'g(r:'% .

T=o

Use (3.9) so that (-1)T <m+¥-l> = (f%)

and
Q= 07 (A
T=o0

In view of (2.5),

(-1)T <-?-n> = <-(m;n)>

o
H

Again use (3.9) to give the value
+n+r-1
q = (mmir-1)

or

<m+§:§-1> <n;t-l> i (m+r;+r-l>

et

But the validity of this (expression (4.5)) was necessary
to prove the theorem.

Generalization of the multiplicative formulae. The
three theorems of closure for the elements y , y € Rl;
m ' n

: under multiplication may be
Y € Rl, Y, € R2’ Ym? Yn € R2 P y

incorporated into a single theorem. Before doing this we
will show that a single formula can express any element
Yo € R. This fact is given by

-13-




Theorem 4 - Any element y,e¢ R is given by the expansion

s m .
Vo = PZO <P>Sm-rxr (m any integer) (5.1)

Consider any negative integer or zero,
m=-t, t=0,1, 2, —--.
Expression (5.1) then becomes
T (-t
y = 1 (%) .
e L Ue)s X (5.2)

On the basis of (3.9) we can write that (';) = <'1>r<t+§_l>,

so that (5.2) becomes

. % nF (wreD) _
Y o+ rzo ( r /S ppXp s b= 0,1,2,---, (5.3)
But that is the form (3.2) for any element ¢ R2.
Now let m be a positive integer or zero, namely
m=n,n=20,1, 2, =--. Then (5.1) becomes
v S’)
Vs ,2:,0 (r Ss-r®r (5.4)
Now
(=3 [ J
283_X=ZS.SX+):S>SX
sz=rr s-r‘r s-r‘r .
r=o<r r=0 <P> r=s+l <;
But by the combinatorial formula (2.7), (%): 0 for r > s,
b s
So that 7} <P>S X =0 and (5.4) changes to
r=s+l S-r
s
- s
Vg *° rzo <r> Sq_pXps 8 T 0,1,2,---, (5.5)

-l)je




which is the form (2.1). Thus Theorem 4 is valid.

We now consider the general closure principle
given by

Theorem 5 - If ym, yn € R, then

= 1 5.6
YoVn = Ymen® Ymen © R for any integer, m,n, ( )
with the conditions
- - : |
SaSB = Su+8’ nyc = Xy+6 for any integer, m,n. (5.6"')

The proof is readily achieved with the use of
expression (5.1). The element Ym+n is given by

- 7 (m*n .
ym+n = Z ('r) Sm+n—rxr for any integer m,n. (5.7)
r=o
Use (2.5) to get
® (n m
Ymtn Z (t) (I‘-t) Sp +n-pXp fOr any integer m,n. (g g,

r=o

Develop vy vy 1in the form
m n

m e /n
<;> Sp-rXr 1 (;)Sn-sxs'
o s=o

Cauchy's multiplication formula leads to

[ r
Ywn > L 1 Gf}t) Sm-r+txr-£) Sp-tXe
r=o t=o

~15<




If the conditions (5.7) are satisfied,

_ ® (m>n X F ._t
Ym¥n = ) .g et (t) Sm+n-r , for any integer m,n. (5.9)
r=o t=o

But (5.9) is precisely (5.7). The theorem is thus proved.
The coefficients (?) of (5.1) may be put in dif-

ferent functional forms. Two other forms are considered
here. In terms of gamma functions

(m)- m! = P(m+l)
r (m-r)!r! r(m=r+l)r(r+l)

Though the gamma functions are undefined for negative in-
tegral arguments or zero yet the total expression is de-
fined. We thus have a second form for (5.1), namely

[ (m+1l) S X )
F(r+1)r (m-r+l) “m-r"r (m any integral (5.10)

Ym =}
r=o

value or zero.)

From the form (5.10) another expression may be
formulated in terms of the hypergeometric functions [11.].
Consider the well known relation between the gamma and
hypergeometric functions, namely

F(c)r(c-a-b) -
= F(a,bjc3l)
r(c-a)r(c-b) ! ? (5.11)

where ¢ « a « b > 0 and where the quantities are assumed
real.

Specify the identity

r(m 1) (x) s r(c) r (c-a-b)
r(r+l1)r(m-r+1) r(c-al)r(e~b)
where T(x) is introduced with the unknown argument and to

be determined with the quantities a,b,c by the four linear
equations derived from the identity, namely

-16-




¢ = m+l, c-a-b = X, c-a = r+l, c-b = m-r+l,.

The above equations lead to the values

as=m-r, b 2r, c=mtl, x=1

It further follows that, since c-a-b = x = 1 > 0, the
condition imposed on the relation (5,11) is satisfied.
So that, since I'(x) = r(1) = 1

T(m+l)

I'Tr-bl)r(m_r‘_l) = P(m-r’r;m+l;l)

Thus a third form for the expression of the general
formula (5.1) is given as

Yo ;iop (m—r,r;m+1;l)Sm_rXr (m any integer)

For the purpose of reference and to observe the
concrete form which is the base of the general formulae
(5.1), (5.10) or (5.12) the indices are re-inserted., If
we bear the equations of motion (1.12) in mind, then

or

ih = H. ih
Xm+2 § Jym

Use formulae (5.1), (5.10), (5.12). So that

A= v ¥ (™l ki 27 T TmtD)
m+2 § rzo ](’> m-r § rZo T (r+ D1 (m-r+1)

He-18

H.F(m-r,r;m+131)87 x*J(n).
] m-r r

sil xiJ(n) =
m-r ry
j r=o

(5.12)

(5.13)

(5.13")

(5.14)

-17-



II. THE BASIC PROPERTIES OF THE SET R AS A GROUP

The previous part of the paper, was concerned
mainly with the formulation of the properties of the set
R = RyUR, from a well defined generating element y, e Ry,

derived from the canonical form of the equations of motion
of the N bodies. Though the elements (----,y_3 sY_9sY_1)

€ R2, unlike the elements (yl,yz,ya,---) € Ry, were init-

itially undefined yet (by what at first appeared to be an
arbitrary or at best a heuristic definition (3.2)), these
negative elements were incorporated into the collection R.
The principle of closure thus gave properties to the set

of elements R,, those properties that belong to the total

2
aggregate R,

OQur object in part II of the paper is (1) to
unfold some of the properties of R and (2) to indicate,
very broadly and briefly, a few processes (involving the
properties of R) by means of which the N-body problem may

be resolved explicitly.,

The set R = ngg

2

as a group - The first property

that we establish for the set R is that it is a group

under the defined multiplicative operation.

This property

was not explicitly given in the previous discussion. Here
we emphasize those facts which determine that a collection

of elements constitutes a group [12].

Theorem 6 - The set R = R1UR2 is an Abelian group of infin-

ite order, where

= 0,1,2,=~~ 3 Yon € Rza n=1,2,3,--~

Ve Rps @ =
m [
- m . - n+p-1
Ym = p§o<p> Sm—pxp’ Yon © pzo ( P >S-n-pxp
Voeg ° Yp¥g? Yp¥g € R 3 Tys = 0,

with the multiplicative conditions

-~ lé-

(6.1)

(6.2)

(6.3)




SS =S5

% a B G;B,Xx = X 3 AyByyed = 0, + 1’12’___;

Yy § y* s -

(the scalar quantities S and X belong to the field of real
or complex numbers)

1 (1) The element y_ is the identity element of
‘ the set R, namely YoVm = YmYo = Ynm for the set of all in-
‘ tegers {m} . If the general form (5.1) is used, then

Yo¥m = So¥o ¥ (?) SppXp = Z (? Soxosm-rxr for any
r=0 r=0

integer m

Use the multiplicative conditions (4), so that
c /m
Vo¥m = 1 (P)Sm-rxr * Ym
r=o
The same result is obtained for Yo¥o©

(2) For every subscript m of y_ there exists an
integer _p, of y_p, such that

Ym¥em T Yom'm T Yo

To prove the existence of an inverse element y m € R

corresponding to any element Vm € R, the closure theorem 2
on mixed indices is used, namely, if Y, € Rl’ Y., € R2,

The same theorem leads to the fact that y wm - Yo

(3) The associative rule for any three elements
is valid, namely

ymyn> yr : ym (ynyr>‘

This statement is immediately seen to be true by the general
closure principle for multiplication. Thus

Y n) e © " Yimtn)+r Tm+(n+r) ym(?nyq>'

y(m+n)yr
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(4) The set R is commutative. This is readily
observed., If ym, yn ¢ R, then by the general closure form-

ula (5.6), VYoVn ° Y n,for all integers m, n.

m+

However, in view of (5.1),

(m;n) Sm+n-r'xr :

I C)s, X
o rso

n+tm-r r

ne~1 8

Ym¥n * Ym4n * r

Yn+m = YnYm*

(5) The number of elements in R is a discrete
infinity. This is manifest since the number in the set of
all integers is a countable infinity.

The validity of these five properties of the
set R establishes the validity of the theorem. If might
be observed that since the set R, under the defined multi-
plicative operation, is isomorphic to the set of all in-
tegers under addition, the proof of the theorem could be
more elegently established by noting this isomorphism.

The basic non=zalgebraic property of the group R =

The essential meaning of the development of the algebraic

structure of the set R = RlUR2 relative to the solution

of the N-body problem, lies in the implications of the
non-algebraic property of the group R as given by

Theorem 7 - If the elements in the group R are ordered in

a sequence of increasing subscripts, then any element of
the set is the derivative (relative to time) of it's immed-
iate predecessor and is the integral (but for an additive
constant) of its immediate successor.

For positive subscripts the theorem is immed-
iately established by virtue of the rule of Leibnitz for
the product of any two elements of Ry . The rule is an
inductive ope such that, given the initial element y, ¢ Rl

any positive element in the sequence is defined by an appro-
priate number of differentiations of an intially given
element of the positive sequence. This is specifically so
for the immediate precedessor of a specified element. If
further the ordinary notion of integration is adhered to

(as an operation inverse to differentiation), then any given
element is the integral (but for an arbitrary constant) of
an immediate successor in the ordered positive set (Rl).

-20=-




However this inductive rule no longer necessarily applies
for the total sequence R since the rule itself is estab-
lished from the properties of the positive elements

(y1s Y95 Y35 ---) and the assumption that y; is to follow y_.

A more concrete formulation is given in the proof
of the theorem for the positive sequence, R, , by disre-

garding the Leibnitz inductive formula and making formulae
(2.1) and (2.4) as ab initio definitions. Then since

n e

(;‘) Sp.pXps T = 0,1,2,-—-, (7.1)

p=o0

dy r T

= =z S X + X X ]

at pgo (P>[r—p+1 P r-p p+l
By the use of (2.u4),

d © 7
:i{—r‘ ) pzo @)Sr-pxp(slxo ¥ Soxl) =(Slx° * S°Xl) P;o (g)SP‘PXP‘

However since Y1 S Xo + SOX

1 and v, is given by (7.1), it

1
follows that

d
p

e = Ylyr = Yr+1 (because of (2.3))

Further, by the definition of indefinite integration, namely
that

yr = fyr+ldt + c . (c, for the time being, is
assumed zero), the theorem for the ordered set R, is estab-

lished. (The element Yo is assumed given, formula (1.12)).
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The case for the sequence of elements be-
longing to R2 is initially categorically different.

The element y__ e R,, m > 0 has initially no concrete
meaning since it is not generated from Yo inductively

but is abstractly defined in terms of undefined symbols
through the formula (3.2). We now show that the sequence
of elements of R, have the same basic property (as given

by the theorem) as the ordered elements of Rl’

The derivative of

<
"

[ or (MEs | x (7.2)

-Mm -m-r-r?
r=0

is given by

Yon _
dt

(7.3)

ne-1g

T (m+p-1
(-1
( r ) I:S—m-r'xr+l ¥ S-m—r+lxr]

r=0

With the use of (3.4)

dy_m
dt

{(-1)r<m§)sx +8.x]s X
r=o ol l of -=m-rr

(5%, *+ S,X) 1;2:0(-1)1”("‘;'.1"1) s X

Since y, = SoX + Slxo and y m is given by (7.2), it

1
follows that

ay_n
dt 1l =m -m+1l
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With the added note on the definition of
the indefinite integral (with c = 0), the theorem
is shown to be also valid for the set of ordered

elements of R2. We make one manifest observation

on the application to the N-body problem, namely,
if the unknown quantities S q’ qQ = 1,2,3,--- can

be determined, then the N-body problem is resolved.
We will give a brief elaboration on this point in
the final section of the paper.

A division algorithm. The existence of an
inverse element Y_m € R for any Ym € R namely

VVem = YoVm = Yo leads to the question as to the

meaning of a division symbolism, . The answer
y
m

is given by the

Theorem 8 - The division symbol Yo means y__ if
Ym

the process of division is carried through such that

the multiplicative conditions

SGSB = SG*B’ XYXG = XY+6; a,B8,Y,8 = 0, 11’ :2, ——

are fulfilled.,

Consider first an example to illustrate a
concrete situation in the division algorithm in which
the conditions (8.1) are involved. It is proposed to

y
find the value of Q form = 2.
Ym

Thus
yo SOXO

Y2 S2X°+2SlX1+S°X2

(8.1)
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Now carry through the indicated process with (8,1) in mind,

S X =28 X _ +3S
-3 1

X = ce-
-2 0 4 2

S X +2S_X_+S X S X
20 1 o 2 o o
+
SOXo 2S_le+S_2X2

-25_X.-S_,X,
- -4 -
25 X, -4S_,X,-2S_.X,
3S_,X, +25_3Xg

3S_2X2 +GS_3X3+3S_uXu

1

If the process is continued, we find that

y T r (pr+l
o _ = z (-1) ( r >S X
y2 r=o 2= 1 ,
B R . o I"+l)
ut in view of (3,2) ) (-1)F r /s ) X =y 2holds.
Lo -2-r'r -
Hence
yo
= y-2
Yo ¢

In general after the division is performed

under (8.1) for the given quantities, has the
Ym
expression
y ® m+r-1 (8.2)
O = r - 3
m =

This expression in the form of a theorem may be estab-
lished by the inductive process. However, a somewhat
simpler proof is given by the following consideration.
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Start with the given fact that an inverse exists for
each element Yo € R, namely,

Now symbolically divide both members of the equation
by Yo S° that

-m -
Ym ym
. e . y .
Perform the division algorithm on L with (8.1)
m
in view. This leads to the quantity Tm = Soxo = Ve
Ym
y _ .
So that ©_ = VYoY_ne But since YoVom = Yom» We have
y
m

y
that Yom = o and thus establishing the theorem.
Im

We here make the manifest observation that the
theorem has formal validity only since the division ex-
pansion is expressed terms of the still unknown entities,
the negative S's (S_q, qQ = 1,2,3,~--).

Not until Sqlis evaluated can we ascribe any
. y
other but a formal meaning to y_p = —;Q— . However,
m

this paper can demand no more than the formal or struc-
tural phases in its theorems relative to N-body problem,
A work in progress at present on the explicit solution
of the N-body problem utilizes the above theorem in a
significant analytical mode.

The division theorem may be generalized by
posing a question whose answer is the generalization.
Given a linear equation ypy, = yg, what is the solution,

Yms when Yy, and y
in the

gare given? The solution is embodied
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Corollary - If Yps ¥g € R (r,s any two integers) and

ymyr = yS then ym = ys—r € R

Divide both sides of the equation formally

by y_.
Yp Ys y
Thus _Z Ym T — o The factor L of the left member
Yr Yr Yr
. Yp -
becomes, through the division algorithm, 7= = Sng Yo
r

y
(1.11). So that §£ Ym = YoY¥m = Ym+ The right member

r
yS ys yOyS yO
— may beput in the form _ z —— = — Vg
Y Yy Yo Yp *
y
But Yo = Y_, Dby the division theorem and so S = Y_p¥s e
Yp r
However, because of (3.3), Y_p ¥g = Yg_pe Join the

altered expressions for the left and right members of

y y
Ly = £ to gety,

Thus the corollary is
Yr m Yp

= yS—I‘ .
is shown to be valid with the observation that Voopt R,

Brief outline of the application of the algebraic struc-
ture to the analytical solution of the N-body problem

£13.], (8.1,

The algebraic processes thus far developed
suggests a number of modes of utilizing the formal strug-
ture in the explicit solution of the N-body problem, Since
the explicit solution implies analytical considerations,
we must forego detailed developments in this paper and
deal briefly with the direction in which the formalism
points.
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Let us utilize a modified form of the basic
Theorem 7 on the non-algebraic operations on the Group
R. This modification creates a new set of elements,

R. Thus consider an arbitrary polynomial in t of given

m-1 .
degree m - 1, namely .Z Citl (C;, an arbitrary real
=0 -—
quantity). The new eiement, Y_m € R is given by the
transformation
m-1 .
Yom * Yo ¥ .2 Citl s M= 1,2,3,-=~, (s.1)
i=zo

We note the obvious meaning of this trans-
formation. Tor if we take a sequence of m derivatives
on ¥_m, it is transformed into ¥, = Yo+ This element,
Y,» is, as we know, not only the identity of the group
R"but is the generic element from which the positive
and the negative elements of R are generated by differ-
entiation and its inverse respectively.

At least two processes for the solutien of the
N-body problems are suggested by the algebraic structure,
thus far developed. We consider briefly two of these
modes.,

(1) The statement (3.2) modified, by the use
of (9.1), leads to the form

o
= - T (m+r-1 ;
Som = 1 DT (wrl) o T (3.2)
r=0 -M=-r r . 1
izo

It becomes known on the condition that S for any

-M=-r?
positive integer m > 0, is known. It is conjectured

that the evaluation of an infinite determinant (shown

to be convergent) will lead to known values of S_m-p*

If these values become known then their substitution in
w the equation (9.2) form = 1 and m = 2, namely

y
-1

— - -1Tf
v_, 7 ( (r+1)s_, X +C_ +Ct (9.3)

r=o
gives the solution of the N-body problem.

) (-1)F s X +C
ro -l-r r o
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If we revert to the indices, then

sih = H. wih
X § Y m

by definition, and is consistent with (5.13'), If we
utilize (5.1%) and (9.2), then

—3 n : m-1 .
X =y H-<ylh + Zcitl>
~m+2 321 J\"-m izo
n . m=1 i
= VT H,yth E H.C th
o J -m . o . e J 1
j=1 izo j=1
n
But since J H,C, is an arbitrary constant, say, C;
j=1 372 ’
then
ih . ih m-1 i
= H. + C.t}
-m+2 .z 3Y .z 1
j=1 i=o0

Formula (5.14) transforms (9.5) into
_'h o0 n . . * o m—l .
x* =7 | H (-1F (’“*P'l) st x¥J (my + § c.tt
—m+2 r=o j:l J r M= i=0 1 Y

Specifically for the solution of the N-body
problem, m = 1,2, so that

=ih _ ¢ ¢ 3P oid i '
X7 = ) _{ Hj( 1) S-l-rxr (h) C,
r=o j=1
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v

. 7 2 H (-1)T(r+1) 83
o]
r=0 j=1

(h) + C + C.t

Cer N (9.8)

These solutions are at the present formal. However, if

the negative S's become known, the expressions (9.7), (9.8)
become explicitly analytical solutions of the N-body problem.
We leave this phase of the structural application for future
analytical considerations.

An obsetvation of some interest is to utilize the

symmetrical character of the S's and the X's in the form-
ulations. A manifest generalization of (2.1) namely that

(;) Sp-pXp = g

So that if the
equations (9.6), (9.7),

for any integer r, specifies this symmetry,
S's and the X's are interchanged,
(9.8) become

- - m-1 .
? Hj(-l)r(m+§-1) ¥ (ysid + Ty ocoet, (9.9

T ih _ T
X2 = 1 ) .
zo Jj=1 1=0

ih

> |
"
ne~g

n
H.(-1)T x
) j

i ij
. -13 (h) 8 - +C_. (9.10)
o 3i=1

- n * . * .
ih I OH DT ¥ ausid e c et (91D
J -2-7 T o i

o j=1

el
"
ne~18

It is more likely
negative X's will
future analytical

that these expressions involving the unknown
turn out to be the more useful forms in
developments,

(2) The second process in the analytical solution
of the N- body problem and in which the evolved algebraic
structure is utilized, involves the expansion of y_, (and y 1)

by a power series

in t about, say, t = 0, Then by means of the
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group properties of R, the non-algebraic operations of
the group, the division theorem and its corollary, the
analytical and the dynamical properties of the N-body
physical system may be determined.

Thus consider the more general expansion,
for any m,

; ] E yr(O) o -1 yr(O) (r+m
-m . (r+m)! pz-m (r+m)!
/e

bod r+m - - _ »
+ z mt ’ m = 1,2,3, (9.12)
r=o

where the first m quantities (yr(t))rzoz y,(0)3

r = -m, ---, - 1 are given as initial conditions of
the physical system.

Let r = - s, then (9.12) takes the form
y = z —--s———— tm-s Z -r_— tr+m 9 m = 1,2,3---0 (9.13)
-m gz7 (m=s)! pzo (ptm)!

Apply formula (2.1) to (9.13), to get

m ‘y_S(O) r r r+m
_— S X
zo oty (n{-p_p g e (9.14)
p:

Yo = 1

¢m-s
- 1
s=1 (m-s)!

L]
t 1
=0 =0

Formula (9.,14) is essentially, except for con-
siderable detailed development, the solution of the N-body
problem (for m = 1 and 2). Thus the expressions

r 1
- r r+l
v =y O + [ ] T?TTTT{P)(Sr-po)Ot ,
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y .=y ,(0)+y _(0)t+ E § __L___(r)(s XJ tr+2 (9.16)
-2 -1 -2 r=o pzo (r+ )11P/{"r-pip 4

when fully evolved will specify the positions and vel-
ocities of the N-bodies relative to an inertial coordinate
system, when the initial boundary conditions are given.
One of the details in the development of the analysis and
its dynamical interpretation is the determination of the
region of convergence for the series and the consideration
of the movable singularities of the solution [13.], [1u4.].
It will be found, as an example of the utilitarian aspect
of the formal algebra, that the corollary to the division
theorem points to such evaluation.
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